
Generalizing	Similar	Functions

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	5.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Generalization

• The	goal	of	generalization	is	to	avoid	having	to	
repeat	code,	whether	the	code	is	identical	or	
slightly	different.			

• In	this	sequence	of	lessons,	you	will	learn	how	
to	do	this,	starting	with	very	simple	situations,	
then	covering	more	and	more	complex	
situations.

2

Slogans	for	Generalization

• Never	write	the	same	code	twice
– Don’t	repeat	yourself
– Single	Point	of	Control	
• fix	each	bug	only	once
• easier	maintenance,	modification

• Copy	and	Paste	is	bad	practice
• Also	known	as:	Refactoring

3

Module	Outline

• Generalizing	a	constant	to	a	variable
• Generalizing	over	functions
• Using	prepackaged	generalizations:	map,	foldr,	
etc.

• A	new	design	strategy:	higher-order	function	
composition (HOFC)

4

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Module	05

5

Learning	Objectives	for	this	Lesson

• By	the	end	of	this	lesson,	you	should	be	able	
to	
– recognize	when	two	functions	differ	only	by	a	
constant

– rewrite	the	two	functions	using	a	single	more	
general	function

– test	your	new	function	definitions
– use	the	higher-order	function	composition	
strategy

6

Imagine	the	following:

• Your	boss	comes	to	you	and	asks	you	to	write	
a	function	called	find-dog.		

• You	follow	the	design	recipe,	write	the	code,	
and	test	it.		

• Your	boss	and	you	are	both	happy.
• Here’s	what	you	wrote:

7

find-dog
;; find-dog : ListOfString -> Boolean
;; GIVEN: a list of strings
;; RETURNS: true iff "dog" is in the given list.
;; STRATEGY: Use template for ListOfString on los
(define (find-dog los)

(cond
[(empty? los) false]
[else (or

(string=? (first los) "dog")
(find-dog (rest los)))]))

(check-equal? (find-dog (list "cat" "dog" "weasel")) true)
(check-equal? (find-dog (list "cat" "elephant" "weasel"))

false)

8

The	story	continues

• The	next	morning,	your	boss	comes	to	you	
and	asks	you	to	write	find-cat.		

• You	follow	the	design	recipe,	write	the	code,	
and	test	it.		

• Here’s	what	you	wrote:

9

find-cat
;; find-cat : ListOfString -> Boolean
;; GIVEN: a list of strings
;; RETURNS: true iff "cat" is in the given list.
;; STRATEGY: Use template for ListOfString on los
(define (find-cat los)

(cond
[(empty? los) false]
[else (or

(string=? (first los) "cat")
(find-cat (rest los)))]))

(check-equal? (find-cat (list "cat" "dog" "weasel")) true)
(check-equal? (find-cat (list "elephant" "weasel")) false)

10

A	lot	of	repeated	work	there!

• Your	boss	is	happy,	but	you	are	less	happy;	
what	if	the	next	day,	he	asks	you	to	write	
find-elephant?

• You	feel	like	you	are	wasting	a	lot	of	time!
• Let’s	see	just	how	alike	these	functions	were.

11

These	functions	are	very	similar:
(define (find-dog los)
(cond
[(empty? los) false]
[else
(or
(string=?
(first los)
"dog")

(find-dog
(rest los)))]))

(define (find-cat los)
(cond
[(empty? los) false]
[else
(or
(string=?
(first los)
"cat")

(find-cat
(rest los)))]))

12

The	only	differences	between	the	functions	are	
their	names,	and	the	fact	that	one	refers	to	
“dog”	and	the	other	refers	to	“cat”.

So	generalize	them	by	adding	an	
argument

;; find-animal : ListOfString String -> Boolean
;; returns true iff the given string is in the given los.

(define (find-animal los str)
(cond

[(empty? los) false]
[else (or

(string=? (first los) str)
(find-animal (rest los) str))]))

(check-expect
(find-animal (list "cat" "elephant" "weasel") "elephant")
true)

(check-expect
(find-animal (list "cat" "elephant" "weasel") "beaver")
false)

13
Nothing	mysterious	here!

What	did	we	do	here?

• If	two	functions	differ	only	in	a	few	places,	add	
extra	arguments	for	those	places.	

• find-dog and	find-cat can	be	generalized	to	
get	find-animal.		We	replace	a	constant,	like	
"dog" or	"cat" with	an	argument,	here	str.

• Moving	common	code	to	a	single	function	
with	some	extra	arguments	is	what	is	often	
called	"refactoring".

14

Generalization

• Both	functions	were	special	cases	of	a	more	
general	function.

• The	more	general	function	takes	extra	
arguments	that	express	the	differences.

• The	arguments	"specialize"	the	function.
• Must	make	sure	that	we	can	to	specialize	back	
to	our	original	functions:

15

Confirm	that	the	original	functions	can	
still	be	expressed.

(define (find-dog los)
(find-animal los "dog"))

(define (find-cat los)
(find-animal los "cat"))

(define (find-elephant los)
(find-animal los "elephant"))

16

find-elephant is	
now	a	one-liner.		Yay!

What's	the	strategy?
;; STRATEGY: Use template for ListOfString on los
(define (find-animal los str)

(cond
[(empty? los) false]
[else (or

(string=? (first los) str)
(find-animal (rest los) str))]))

;; STRATEGY: Call a more general function
(define (find-dog los)

(find-animal los "dog"))

17

We	could	describe	this	as	
"call	a	simpler	 function",	

but	it	seems	more	
accurate	to	describe	this	
as	calling	a	more	general	

function

In	this	function	we	are	
still	using	 the	template

Don't	get	all	anxious	
about	the	difference.

How	to	test	the	new	definitions
• To	test	the	new	definitions,	comment	out	the	old	
definitions.		This	can	be	accomplished	by	using	the	
Racket	menu	item	for	"comment	out	with	semicolons".		

• An	entire	parenthesized	expression	can	also	be	
commented	out	by	prefixing	it	with	#; (see	the	Help	
Desk	for	details).

• Do	NOT	use	the	Racket	menu	item	"comment	out	in	a	
box"—the	result	will	be	that	your	Racket	file	is	
converted	to	a	form	that	is	no	longer	plain	text,	and	
will	not	be	viewable	with	ordinary	tools	(text	editors,	
web	browsers,	etc.).

18

Your	file	should	now	look	like	this:

#;(define (find-dog los) ...)
#; (define (find-cat los) ...)

(define (find-animal los str) ...)
(define (find-dog los)

(find-animal los "dog"))

19

The	old	definitions	are	commented	out

find-dog now	refers	to	the	new	definition

Now	your	old	tests	should	work	
WITHOUT	CHANGE

(check-equal?
(find-dog (list "cat" "dog" "weasel"))
true)

(check-equal?
(find-dog (list "cat" "elephant" "weasel"))
false)

(check-equal?
(find-cat (list "cat" "dog" "weasel"))
true)

(check-equal?
(find-cat (list "elephant" "weasel"))
false)

20

The	new	definitions	of	find-dog and	
find-cat are	the	only	ones	visible,	so	
these	are	now	testing	the	new	
definitions.

Another	Example:	Pizza!
;; Data Definitions:

;; A Topping is a String.

;; A Pizza is a ListOfTopping
;; INTERP: a pizza is a list of toppings, listed from top to bottom

;; pizza-fn : Pizza -> ??
;; (define (pizza-fn p)
;; (cond
;; [(empty? p) ...]
;; [else (... (first p)
;; (pizza-fn (rest p)))]))

;; Examples:
(define plain-pizza empty)
(define cheese-pizza (list "cheese"))
(define anchovies-cheese-pizza (list "anchovies" "cheese"))

21

The	toppings	are	listed	in	a	certain	order,	
so	we	must	include	the	order	in	the	
interpretation.

replace-all-anchovies-with-onions
;; replace-all-anchovies-with-onions
;; : Pizza -> Pizza
;; GIVEN: a pizza
;; RETURNS: a pizza like the given pizza, but with
;; anchovies in place of each layer of onions
(define (replace-all-anchovies-with-onions p)

(cond
[(empty? p) empty]
[else (if (string=? (first p) "anchovies")

(cons "onions"
(replace-all-anchovies-with-onions

(rest p)))
(cons (first p)

(replace-all-anchovies-with-onions
(rest p))))]))

22

Opportunities	for	Generalization

We	can	generalize	over	onions	to	get	replace-
all-anchovies.

;; replace-all-anchovies
;; : Pizza Topping -> Pizza
;; GIVEN: A pizza and a topping
;; RETURNS: a pizza like the given pizza, but
;; with all anchovies replaced by the given
;; topping.

23

Opportunities	for	Generalization

Generalize	over	anchovies	to	get	replace-
topping.

;; replace-topping
;; : Pizza Topping Topping -> Pizza
;; GIVEN: a pizza and two toppings
;; RETURNS: a pizza like the given one, but
;; with all instances of the first topping
;; replaced by the second one.

24

Summary

• Functions	will	sometimes	differ	only	in	choice	
of	data	items.

• Functions	can	be	generalized	by	adding	new	
argument(s)	for	the	differences.

• Confirm	the	original	functions	work	before	
generalizing.

• Test	functions	by	renaming	the	originals	and	
running	the	same	tests.

25

Next	Steps

• Study	05-1-find-dog.rkt	and	05-2-pizza.rkt	in	
the	examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	5.1
• Go	on	to	the	next	lesson.

26

